# Understand the Input Data Prior to Ambient Impact Modeling

Ashok Jain, NCASI
EPA 2014 Regional, State, and Local
(RSL) Modelers' Workshop

Salt Lake City, Utah May 20, 2014

# **Current Practices in Input Data Selection**

- Permit Limits
- AP-42 Emission Factors
- Source Measurement/Monitoring

### Three Questions Relative to Ambient Impact Modeling

- 1. Are permit limits appropriate representation of source emissions?
- 2. Do AP-42 emission factors/methods represent actual emissions?
- 3. Do EPA test methods always correctly measure the pollutants of interest?

### Question No. 1

Are permit limits appropriate representation of source emissions?

### Source #1 lime kiln. Average hourly $SO_2$ emissions 0.035 lb/hr. Permit limit 153 lb/hr.



### Source # 2 recovery furnace. Average hourly SO<sub>2</sub> emissions 82.9 lb/hr. Permit limit 806.6 lb/hr.



### Source # 3 lime kiln. Average hourly NO<sub>x</sub> emissions 17.1 lb/hr. Permit limit 64 lb/hr.



#### Question No. 2

Do AP-42 emission factors/methods represent actual emissions?

### **Storage Pile PM Emissions**

- Emissions estimated by empirical methods
  - Based on test data for coal, sand or gravel
  - Estimates yield Total Suspended Particulate
     (TSP) emissions

$$EF_{PM10} = k_{PM10} EF_{TSP}$$

$$EF_{PM 2.5} = k_{PM 2.5} EF_{TSP}$$

 $-k_{PM10}$  and  $k_{PM2.5}$  (portions of TSP attributed to size fractions) not available for wood or bark

### **Storage Pile PM Emissions**

- Applicability to FPI sources not established
  - Higher particle density
  - Moisture range: ~0.5-5.0% & Silt range: 1-20%
  - No threshold friction velocity for wood or bark PM
  - AP-42 estimates for PM fractions

$$k_{PM10} = 0.35$$

$$k_{PM 2.5} = 0.053$$

#### Storage Pile PM Emissions NCASI Work

• Preliminary work completed to characterize silt fractions for chip and bark and  $k_{PM10}$  and  $k_{PM2.5}$ 

|       | 5 Mill Test                                                 | AP-42                                                                    |
|-------|-------------------------------------------------------------|--------------------------------------------------------------------------|
| Chips | s = 0.00014%<br>$k_{PM10} = 0.0030$<br>$k_{PM2.5} = 0.0005$ | s = None for<br>wood or bark<br>$k_{PM10} = 0.35$<br>$k_{PM2.5} = 0.053$ |
| Bark  | $s = 0.0013\%$ $k_{PM10} = 0.0015$ $k_{PM2.5} = 0.0002$     |                                                                          |

#### **Summary of Preliminary Results**

- Use of AP-42 values would significantly overestimate emissions from these sources
- None of the  $PM_{2.5}$  (from SEM analysis) attributed to woody or fibrous material

### Question No. 3

Do EPA test methods always correctly measure the pollutants of interest?

# Current EPA Methods for Measuring PM<sub>2.5</sub>

| PM <sub>2.5</sub> Component  | Test Method |  |
|------------------------------|-------------|--|
| Filterable PM <sub>2.5</sub> | Method 201A |  |
| Condensible PM               | Method 202  |  |

### Filterable PM<sub>2.5</sub> Emissions from Natural Gas Combustion

**Test Duration: 24 hours** 

| Run     | PM <sub>2.5</sub> Mass, | NCASI Train |
|---------|-------------------------|-------------|
| No.     | mg                      | Blank, mg   |
| 1       | 1.26                    |             |
| 2       | 0.85                    | 0.28        |
| 3       | 0.75                    |             |
| Average | 0.95                    | 0.28        |
|         |                         |             |

True PM Mass, mg = 0.67 mg

## Impact of Sampling Time and Train Blank on Filterable $PM_{2.5}$ Emissions from





#### Impact of Sampling Time and Train Blank on CPM Emissions from Natural Gas Combustion



### Impact of Sampling Time and Train Blank on PM<sub>2.5</sub> Emissions from Natural Gas Combustion



### Sulfate Content of CPM in Gas-Fired Boilers

| Run No. | CPM Mass, mg | SO <sub>4</sub> = Content, mg |
|---------|--------------|-------------------------------|
| 1       | 16.20        | 8.06                          |
| 2       | 12.91        | 7.72                          |
| 3       | 23.94        | 11.51                         |
| Average | 17.68        | 9.10                          |

Blank corrected CPM = 
$$17.68 - 5.39$$
  
=  $12.3 \text{ mg}$ 

### Impact of Sampling Time and Train Blank on $PM_{2.5}$ Emissions from a Linerboard Paper Machine



### Components of Kraft Recovery Furnace PM and CPM

#### Mass, mg

| Analyte               | PM    | CPM   |
|-----------------------|-------|-------|
| Carbonate             | 0.89  | 22.98 |
| Chloride              | 13.50 | 35.68 |
| Nitrate               | 0.03  | 0.09  |
| Sulfate               | 24.07 | 16.68 |
|                       |       |       |
| Ammonium              | 0.21  | 20.25 |
| Potassium             | 0.40  | 0.08  |
| Sodium                | 17.82 | 0.57  |
| Total Mass by IC (mg) | 57.26 | 96.53 |

# Impacts of Stack Gas SO<sub>2</sub>, NH<sub>3</sub> and HCl on Reported CPM Levels

- Results suggest that CO<sub>2</sub>, SO<sub>2</sub>, NH<sub>3</sub> and HCl are captured in the CPM train
- Questions being investigated:
  - How much SO<sub>2</sub>, NH<sub>3</sub> and HCl are captured in the CPM train?

### Overall Impact of PM<sub>2.5</sub> Measurement Method Issues

- Potential for significant overstatement of emissions due to condensation/capture of gases which do not contribute to atmospheric PM.
- Higher emission rate estimates translate directly into higher modeled emission impacts

### Summary

- Pay attention to your inputs
- Otherwise, it is "garbage in, garbage out"

### **Questions?**